Brickworks > API documentation > bw_drive
Overdrive effect.
Loosely inspired to the green "screaming" overdrive pedal.
Module type: dsp
Version: 1.1.0
Requires:
typedef struct bw_drive_coeffs bw_drive_coeffs;
Coefficients and related.
typedef struct bw_drive_state bw_drive_state;
Internal state and related.
static inline void bw_drive_init(
bw_drive_coeffs * BW_RESTRICT coeffs);
Initializes input parameter values in coeffs
.
static inline void bw_drive_set_sample_rate(
bw_drive_coeffs * BW_RESTRICT coeffs,
float sample_rate);
Sets the sample_rate
(Hz) value in coeffs
.
static inline void bw_drive_reset_coeffs(
bw_drive_coeffs * BW_RESTRICT coeffs);
Resets coefficients in coeffs
to assume their target values.
static inline float bw_drive_reset_state(
const bw_drive_coeffs * BW_RESTRICT coeffs,
bw_drive_state * BW_RESTRICT state,
float x_0);
Resets the given state
to its initial values using the given coeffs
and the initial input value x_0
.
Returns the corresponding initial output value.
static inline void bw_drive_reset_state_multi(
const bw_drive_coeffs * BW_RESTRICT coeffs,
bw_drive_state * BW_RESTRICT const * BW_RESTRICT state,
const float * x_0,
float * y_0,
size_t n_channels);
Resets each of the n_channels
state
s to its initial values using the given coeffs
and the corresponding initial input value in the x_0
array.
The corresponding initial output values are written into the y_0
array, if not BW_NULL
.
static inline void bw_drive_update_coeffs_ctrl(
bw_drive_coeffs * BW_RESTRICT coeffs);
Triggers control-rate update of coefficients in coeffs
.
static inline void bw_drive_update_coeffs_audio(
bw_drive_coeffs * BW_RESTRICT coeffs);
Triggers audio-rate update of coefficients in coeffs
.
static inline float bw_drive_process1(
const bw_drive_coeffs * BW_RESTRICT coeffs,
bw_drive_state * BW_RESTRICT state,
float x);
Processes one input sample x
using coeffs
, while using and updating state
. Returns the corresponding output sample.
static inline void bw_drive_process(
bw_drive_coeffs * BW_RESTRICT coeffs,
bw_drive_state * BW_RESTRICT state,
const float * x,
float * y,
size_t n_samples);
Processes the first n_samples
of the input buffer x
and fills the first n_samples
of the output buffer y
, while using and updating both coeffs
and state
(control and audio rate).
static inline void bw_drive_process_multi(
bw_drive_coeffs * BW_RESTRICT coeffs,
bw_drive_state * BW_RESTRICT const * BW_RESTRICT state,
const float * const * x,
float * const * y,
size_t n_channels,
size_t n_samples);
Processes the first n_samples
of the n_channels
input buffers x
and fills the first n_samples
of the n_channels
output buffers y
, while using and updating both the common coeffs
and each of the n_channels
state
s (control and audio rate).
static inline void bw_drive_set_drive(
bw_drive_coeffs * BW_RESTRICT coeffs,
float value);
Sets the overdrive (input gain, approximately) to the given value
in coeffs
.
Valid range: [0.f
(low overdrive), 1.f
(high overdrive)].
Default value: 0.f
.
static inline void bw_drive_set_tone(
bw_drive_coeffs * BW_RESTRICT coeffs,
float value);
Sets the tone (filter) to the given value
in coeffs
.
Valid range: [0.f
(low cutoff), 1.f
(high cutoff)].
Default value: 0.5f
.
static inline void bw_drive_set_volume(
bw_drive_coeffs * BW_RESTRICT coeffs,
float value);
Sets the volume (output gain) to the given value
in coeffs
.
Valid range: [0.f
(silence), 1.f
(max volume)].
Default value: 1.f
.
static inline char bw_drive_coeffs_is_valid(
const bw_drive_coeffs * BW_RESTRICT coeffs);
Tries to determine whether coeffs
is valid and returns non-0
if it seems to be the case and 0
if it is certainly not. False positives are possible, false negatives are not.
coeffs
must at least point to a readable memory block of size greater than or equal to that of bw_drive_coeffs
.
static inline char bw_drive_state_is_valid(
const bw_drive_coeffs * BW_RESTRICT coeffs,
const bw_drive_state * BW_RESTRICT state);
Tries to determine whether state
is valid and returns non-0
if it seems to be the case and 0
if it is certainly not. False positives are possible, false negatives are not.
If coeffs
is not BW_NULL
extra cross-checks might be performed (state
is supposed to be associated to coeffs
).
state
must at least point to a readable memory block of size greater than or equal to that of bw_drive_state
.
template<size_t N_CHANNELS>
class Drive {
public:
Drive();
void setSampleRate(
float sampleRate);
void reset(
float x0 = 0.f,
float * BW_RESTRICT y0 = nullptr);
#ifndef BW_CXX_NO_ARRAY
void reset(
float x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0);
#endif
void reset(
const float * x0,
float * y0 = nullptr);
#ifndef BW_CXX_NO_ARRAY
void reset(
std::array<float, N_CHANNELS> x0,
std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
#endif
void process(
const float * const * x,
float * const * y,
size_t nSamples);
#ifndef BW_CXX_NO_ARRAY
void process(
std::array<const float *, N_CHANNELS> x,
std::array<float *, N_CHANNELS> y,
size_t nSamples);
#endif
void setDrive(
float value);
void setTone(
float value);
void setVolume(
float value);
...
}
BW_NULL
and BW_CXX_NO_ARRAY
.bw_drive_reset_state()
.bw_drive_reset_state_multi()
and updated C++ API in this regard.bw_drive_reset_state()
returns the initial output value.reset()
functions taking arrays as arguments.bw_drive_process()
and bw_drive_process_multi()
now use size_t
to count samples and channels.const
and BW_RESTRICT
specifiers to input arguments and implementation.process()
function taking C-style arrays as arguments.