bwp_ladder4_ota

Generic nonlinear model of 4-pole OTA-based ladder filters with separated outputs.

This algorithm can approximate, e.g., SSM2040- and CEM3320-based VCF circuits.

The feedforward branch consists of 4 nonlinear 1-pole lowpass filters with unitary dc gain in series, where the input to the first one is the difference between the algorithm input and the feedback signals, followed by a linear 1-pole highpass filter. The nonlinearity in each lowpass stage effectively limits the slew rate of its output signal.

The feedback branch contains a feedforward/input signal mixer, a linear gain stage, a saturation stage with compensated input bias, and finally another linear gain stage.

The cutoff and feedback gains implement parameter modulation as detailed in bwp_mod_func. Cutoff modulation is however internally limited to avoid instability.

Examples

We can privately hand you one or more example plugins if you are interested.

Contact us

API

Module type: DSP

bwp_ladder4_ota_coeffs

typedef struct bwp_ladder4_ota_coeffs bwp_ladder4_ota_coeffs;

Coefficients and related.

bwp_ladder4_ota_state

typedef struct bwp_ladder4_ota_state bwp_ladder4_ota_state;

Internal state and related.

bwp_ladder4_ota_init()

static inline void bwp_ladder4_ota_init(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs);

Initializes input parameter values in coeffs.

bwp_ladder4_ota_set_sample_rate()

static inline void bwp_ladder4_ota_set_sample_rate(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	float                                sample_rate);

Sets the sample_rate (Hz) value in coeffs.

bwp_ladder4_ota_reset_coeffs()

static inline void bwp_ladder4_ota_reset_coeffs(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs);

Resets coefficients in coeffs to assume their target values.

bwp_ladder4_ota_reset_state()

static inline void bwp_ladder4_ota_reset_state(
	const bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	bwp_ladder4_ota_state * BW_RESTRICT        state,
	char                                       self_osc,
	float                                      x_0,
	float * BW_RESTRICT                        y_lp1_0,
	float * BW_RESTRICT                        y_lp2_0,
	float * BW_RESTRICT                        y_lp3_0,
	float * BW_RESTRICT                        y_lp4_0,
	float * BW_RESTRICT                        y_hp_0);

Resets the given state to its initial values using the given coeffs, the initial input value x_0.

The corresponding initial 1st-, 2nd-, 3rd-, and 4th-order lowpass output values are put into y_lp1_0, y_lp2_0, y_lp3_0, and y_lp4_0 respectively, while the corresponding initial highpass output value is put into y_hp_0.

If self_osc is 1, initial states are computed taking eventual self-oscillation into account. Please note that this calculation is approximate and relatively computationally expensive. Otherwise, set it to 0 to not take self-oscillation into account. Other values for this argument are reserved.

bwp_ladder4_ota_reset_state_multi()

static inline void bwp_ladder4_ota_reset_state_multi(
	const bwp_ladder4_ota_coeffs * BW_RESTRICT              coeffs,
	bwp_ladder4_ota_state * BW_RESTRICT const * BW_RESTRICT state,
	char                                                    self_osc,
	const float *                                           x_0,
	float *                                                 y_lp1_0,
	float *                                                 y_lp2_0,
	float *                                                 y_lp3_0,
	float *                                                 y_lp4_0,
	float *                                                 y_hp_0,
	size_t                                                  n_channels);

Resets each of the n_channels states to its initial values using the given coeffs and the corresponding initial input value in the x_0 array.

The corresponding initial 1st-, 2nd-, 3rd-, and 4th-order lowpass output values are put into the y_lp1_0, y_lp2_0, y_lp3_0, and y_lp4_0 arrays, respectively, if they are not BW_NULL. Similarly, the corresponding initial highpass output values are put into the y_hp_0 array if it is not BW_NULL.

If self_osc is 1, initial states are computed taking eventual self-oscillation into account. Please note that this calculation is approximate and relatively computationally expensive. Otherwise, set it to 0 to not take self-oscillation into account. Other values for this argument are reserved.

bwp_ladder4_ota_update_coeffs_ctrl()

static inline void bwp_ladder4_ota_update_coeffs_ctrl(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs);

Triggers control-rate update of coefficients in coeffs.

bwp_ladder4_ota_update_coeffs_audio()

static inline void bwp_ladder4_ota_update_coeffs_audio(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs);

Triggers audio-rate update of coefficients in coeffs.

bwp_ladder4_ota_process1*()

static inline void bwp_ladder4_ota_process1(
	const bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	bwp_ladder4_ota_state * BW_RESTRICT        state,
	float                                      x,
	float * BW_RESTRICT                        y_lp1,
	float * BW_RESTRICT                        y_lp2,
	float * BW_RESTRICT                        y_lp3,
	float * BW_RESTRICT                        y_lp4,
	float * BW_RESTRICT                        y_hp);

static inline void bwp_ladder4_ota_process1_mod_cutoff(
	const bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	bwp_ladder4_ota_state * BW_RESTRICT        state,
	float                                      x,
	float                                      x_mod_cutoff,
	float * BW_RESTRICT                        y_lp1,
	float * BW_RESTRICT                        y_lp2,
	float * BW_RESTRICT                        y_lp3,
	float * BW_RESTRICT                        y_lp4,
	float * BW_RESTRICT                        y_hp);

static inline void bwp_ladder4_ota_process1_mod_feedback_pre_gain(
	const bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	bwp_ladder4_ota_state * BW_RESTRICT        state,
	float                                      x,
	float                                      x_mod_feedback_pre_gain,
	float * BW_RESTRICT                        y_lp1,
	float * BW_RESTRICT                        y_lp2,
	float * BW_RESTRICT                        y_lp3,
	float * BW_RESTRICT                        y_lp4,
	float * BW_RESTRICT                        y_hp);

static inline void bwp_ladder4_ota_process1_mod_feedback_post_gain(
	const bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	bwp_ladder4_ota_state * BW_RESTRICT        state,
	float                                      x,
	float                                      x_mod_feedback_post_gain,
	float * BW_RESTRICT                        y_lp1,
	float * BW_RESTRICT                        y_lp2,
	float * BW_RESTRICT                        y_lp3,
	float * BW_RESTRICT                        y_lp4,
	float * BW_RESTRICT                        y_hp);

static inline void bwp_ladder4_ota_process1_mod_cutoff_feedback_pre_gain(
	const bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	bwp_ladder4_ota_state * BW_RESTRICT        state,
	float                                      x,
	float                                      x_mod_cutoff,
	float                                      x_mod_feedback_pre_gain,
	float * BW_RESTRICT                        y_lp1,
	float * BW_RESTRICT                        y_lp2,
	float * BW_RESTRICT                        y_lp3,
	float * BW_RESTRICT                        y_lp4,
	float * BW_RESTRICT                        y_hp);

static inline void bwp_ladder4_ota_process1_mod_cutoff_feedback_post_gain(
	const bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	bwp_ladder4_ota_state * BW_RESTRICT        state,
	float                                      x,
	float                                      x_mod_cutoff,
	float                                      x_mod_feedback_post_gain,
	float * BW_RESTRICT                        y_lp1,
	float * BW_RESTRICT                        y_lp2,
	float * BW_RESTRICT                        y_lp3,
	float * BW_RESTRICT                        y_lp4,
	float * BW_RESTRICT                        y_hp);

static inline void bwp_ladder4_ota_process1_mod_feedback_pre_gain_feedback_post_gain(
	const bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	bwp_ladder4_ota_state * BW_RESTRICT        state,
	float                                      x,
	float                                      x_mod_feedback_pre_gain,
	float                                      x_mod_feedback_post_gain,
	float * BW_RESTRICT                        y_lp1,
	float * BW_RESTRICT                        y_lp2,
	float * BW_RESTRICT                        y_lp3,
	float * BW_RESTRICT                        y_lp4,
	float * BW_RESTRICT                        y_hp);

static inline void bwp_ladder4_ota_process1_mod_cutoff_feedback_pre_gain_feedback_post_gain(
	const bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	bwp_ladder4_ota_state * BW_RESTRICT        state,
	float                                      x,
	float                                      x_mod_cutoff,
	float                                      x_mod_feedback_pre_gain,
	float                                      x_mod_feedback_post_gain,
	float * BW_RESTRICT                        y_lp1,
	float * BW_RESTRICT                        y_lp2,
	float * BW_RESTRICT                        y_lp3,
	float * BW_RESTRICT                        y_lp4,
	float * BW_RESTRICT                        y_hp);

These function process one input sample x using coeffs, while using and updating state. The 1st-, 2nd-, 3rd-, and 4th-order lowpass output samples are put into y_lp1, y_lp2, y_lp3, and y_lp4 respectively. Highpass output samples are put into y_hp.

They take various combinations of audio-rate modulation signals as input, namely x_mod_cutoff, x_mod_feedback_pre_gain, and x_mod_feedback_post_gain.

bwp_ladder4_ota_process()

static inline void bwp_ladder4_ota_process(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	bwp_ladder4_ota_state * BW_RESTRICT  state,
	const float *                        x,
	const float *                        x_mod_cutoff,
	const float *                        x_mod_feedback_pre_gain,
	const float *                        x_mod_feedback_post_gain,
	float *                              y_lp1,
	float *                              y_lp2,
	float *                              y_lp3,
	float *                              y_lp4,
	float *                              y_hp,
	size_t                               n_samples);

Processes the first n_samples of the input buffer x and fills the first n_samples of the output buffers y_lp1, y_lp2, y_lp3, y_lp4, and y_hp (1st-, 2nd-, 3rd-, 4th-order lowpass, and highpass, respectively), if they are not BW_NULL, while using and updating both coeffs and state (control and audio rate).

If x_mod_cutoff is not BW_NULL, it is used as a source of cutoff frequency modulation. The same holds for x_mod_feedback_pre_gain w.r.t. pre-saturation feedback gain modulation and for x_mod_feedback_post_gain w.r.t. post-saturation feedback gain modulation.

bwp_ladder4_ota_process_multi()

static inline void bwp_ladder4_ota_process_multi(
	bwp_ladder4_ota_coeffs * BW_RESTRICT                    coeffs,
	bwp_ladder4_ota_state * BW_RESTRICT const * BW_RESTRICT state,
	const float * const *                                   x,
	const float * const *                                   x_mod_cutoff,
	const float * const *                                   x_mod_feedback_pre_gain,
	const float * const *                                   x_mod_feedback_post_gain,
	float * const *                                         y_lp1,
	float * const *                                         y_lp2,
	float * const *                                         y_lp3,
	float * const *                                         y_lp4,
	float * const *                                         y_hp,
	size_t                                                  n_channels,
	size_t                                                  n_samples);

Processes the first n_samples of the n_channels input buffers x and fills the first n_samples of the n_channels output buffers y_lp1, y_lp2, y_lp3, y_lp4, and y_hp (1st-, 2nd-, 3rd-, 4th-order lowpass, and highpass, respectively), while using and updating both the common coeffs and each of the n_channels states (control and audio rate).

If x_mod_cutoff and the channel-specific element are not BW_NULL, this is used as a source of cutoff frequency modulation for that channel. The same hold for x_mod_feedback_pre_gain w.r.t. pre-saturation feedback gain modulation and for x_mod_feedback_post_gain w.r.t. post-saturation feedback gain modulation.

y_lp1, y_lp2, y_lp3, y_lp4, and y_hp or any of their elements may be BW_NULL.

bwp_ladder4_ota_set_cutoff()

static inline void bwp_ladder4_ota_set_cutoff(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	float                                value);

Sets the cutoff frequency to the given value (Hz) in coeffs.

Valid range: [1e-6f, 1e12f].

Default value: 1e3f.

bwp_ladder4_ota_set_cutoff_mod()

static inline void bwp_ladder4_ota_set_cutoff_mod(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	float                                value);

Sets the non-smoothed cutoff frequency modulation component to the given value in coeffs.

value must be finite.

Default value: 0.f.

bwp_ladder4_ota_set_hp_cutoff()

static inline void bwp_ladder4_ota_set_hp_cutoff(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	float                                value);

Sets the cutoff frequency of the 1-pole highpass filter to the given value (Hz) in coeffs.

Valid range: [1e-6f, 1e12f].

Default value: 1.f.

bwp_ladder4_ota_set_feedback_x_gain()

static inline void bwp_ladder4_ota_set_feedback_x_gain(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	float                                value);

Sets the input gain in the feedback mix to value (linear gain) in coeffs.

value must be finite.

Default value: 0.f.

bwp_ladder4_ota_set_feedback_pre_gain()

static inline void bwp_ladder4_ota_set_feedback_pre_gain(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	float                                value);

Sets the pre-saturation feedback gain to the value in coeffs.

value must be finite.

Default value: 1.f.

bwp_ladder4_ota_set_feedback_pre_gain_mod()

static inline void bwp_ladder4_ota_set_feedback_pre_gain_mod(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	float                                value);

Sets the non-smoothed cutoff pre-saturation feedback gain modulation component to the given value in coeffs.

value must be finite.

Default value: 0.f.

bwp_ladder4_ota_set_feedback_post_gain()

static inline void bwp_ladder4_ota_set_feedback_post_gain(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	float                                value);

Sets the post-saturation feedback gain to the value in coeffs.

value must be finite.

Default value: 0.f.

bwp_ladder4_ota_set_feedback_post_gain_mod()

static inline void bwp_ladder4_ota_set_feedback_post_gain_mod(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	float                                value);

Sets the non-smoothed cutoff post-saturation feedback gain modulation component to the given value in coeffs.

value must be finite.

Default value: 0.f.

bwp_ladder4_ota_set_stage_max_rate()

static inline void bwp_ladder4_ota_set_stage_max_rate(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	float                                value);

Sets the maximum slew rate in feedforward lowpass stages to the given value (1/s) in coeffs.

Valid range: [1e-12f, 1e12f].

Default value: 1e6f.

bwp_ladder4_ota_set_feedback_clip()

static inline void bwp_ladder4_ota_set_feedback_clip(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	float                                value);

Sets the feedback clipping level to the given value in coeffs.

Valid range: [1e-12f, 1e12f].

Default value: 1.f.

bwp_ladder4_ota_set_feedback_bias()

static inline void bwp_ladder4_ota_set_feedback_bias(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	float                                value);

Sets the feedback satuation bias to the given value in coeffs.

This value is relative to the saturation curve, that is, changing feedback_clip affects the absolute bias level too. In other words still, the saturation function will typically have the form

y = a * f(b * (x + bias))

where a and b depend on feedback_clip.

Valid range: [-1e12f, 1e12f].

Default value: 0.f.

bwp_ladder4_ota_set_mod_func_cutoff()

static inline void bwp_ladder4_ota_set_mod_func_cutoff(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	bwp_mod_func                         value);

Sets the cutoff frequency modulation function.

Default value: bwp_mod_func_pow2.

bwp_ladder4_ota_set_mod_func_feedback_pre_gain()

static inline void bwp_ladder4_ota_set_mod_func_feedback_pre_gain(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	bwp_mod_func                         value);

Sets the pre-saturation feedback gain modulation function.

Default value: bwp_mod_func_sum.

bwp_ladder4_ota_set_mod_func_feedback_post_gain()

static inline void bwp_ladder4_ota_set_mod_func_feedback_post_gain(
	bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	bwp_mod_func                         value);

Sets the post-saturation feedback gain modulation function.

Default value: bwp_mod_func_sum.

bwp_ladder4_ota_coeffs_is_valid()

static inline char bwp_ladder4_ota_coeffs_is_valid(
	const bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs);

Tries to determine whether coeffs is valid and returns non-0 if it seems to be the case and 0 if it is certainly not. False positives are possible, false negatives are not.

coeffs must at least point to a readable memory block of size greater than or equal to that of bwp_ladder4_ota_coeffs.

bwp_ladder4_ota_state_is_valid()

static inline char bwp_ladder4_ota_state_is_valid(
	const bwp_ladder4_ota_coeffs * BW_RESTRICT coeffs,
	const bwp_ladder4_ota_state * BW_RESTRICT  state);

Tries to determine whether state is valid and returns non-0 if it seems to be the case and 0 if it is certainly not. False positives are possible, false negatives are not.

If coeffs is not BW_NULL extra cross-checks might be performed (state is supposed to be associated to coeffs).

state must at least point to a readable memory block of size greater than or equal to that of bwp_ladder4_ota_state.

C++ wrapper

BrickworksPro::Ladder4OTA
template<size_t N_CHANNELS>
class Ladder4OTA {
public:
	Ladder4OTA();

	void setSampleRate(
		float sampleRate);

	void reset(
		char                selfOsc = 0,
		float               x0 = 0.f,
		float * BW_RESTRICT yLp10 = BW_NULL,
		float * BW_RESTRICT yLp20 = BW_NULL,
		float * BW_RESTRICT yLp30 = BW_NULL,
		float * BW_RESTRICT yLp40 = BW_NULL,
		float * BW_RESTRICT yHp0 = BW_NULL);

# ifndef BW_CXX_NO_ARRAY
	void reset(
		char                                        selfOsc,
		float                                       x0,
		std::array<float, N_CHANNELS> * BW_RESTRICT yLp10,
		std::array<float, N_CHANNELS> * BW_RESTRICT yLp20,
		std::array<float, N_CHANNELS> * BW_RESTRICT yLp30,
		std::array<float, N_CHANNELS> * BW_RESTRICT yLp40,
		std::array<float, N_CHANNELS> * BW_RESTRICT yHp0);
# endif

	void reset(
		char          selfOsc,
		const float * x0,
		float *       yLp10 = BW_NULL,
		float *       yLp20 = BW_NULL,
		float *       yLp30 = BW_NULL,
		float *       yLp40 = BW_NULL,
		float *       yHp0 = BW_NULL);

# ifndef BW_CXX_NO_ARRAY
	void reset(
		char                                        selfOsc,
		std::array<float, N_CHANNELS>               x0,
		std::array<float, N_CHANNELS> * BW_RESTRICT yLp10 = BW_NULL,
		std::array<float, N_CHANNELS> * BW_RESTRICT yLp20 = BW_NULL,
		std::array<float, N_CHANNELS> * BW_RESTRICT yLp30 = BW_NULL,
		std::array<float, N_CHANNELS> * BW_RESTRICT yLp40 = BW_NULL,
		std::array<float, N_CHANNELS> * BW_RESTRICT yHp0 = BW_NULL);
# endif

	void process(
		const float * const * x,
		const float * const * xModCutoff,
		const float * const * xModFeedbackPreGain,
		const float * const * xModFeedbackPostGain,
		float * const *       yLp1,
		float * const *       yLp2,
		float * const *       yLp3,
		float * const *       yLp4,
		float * const *       yHp,
		size_t                nSamples);

# ifndef BW_CXX_NO_ARRAY
	void process(
		std::array<const float *, N_CHANNELS> x,
		std::array<const float *, N_CHANNELS> xModCutoff,
		std::array<const float *, N_CHANNELS> xModFeedbackPreGain,
		std::array<const float *, N_CHANNELS> xModFeedbackPostGain,
		std::array<float *, N_CHANNELS>       yLp1,
		std::array<float *, N_CHANNELS>       yLp2,
		std::array<float *, N_CHANNELS>       yLp3,
		std::array<float *, N_CHANNELS>       yLp4,
		std::array<float *, N_CHANNELS>       yHp,
		size_t                                nSamples);
# endif

	void setCutoff(
		float value);

	void setCutoffMod(
		float value);

	void setHpCutoff(
		float value);

	void setFeedbackXGain(
		float value);

	void setFeedbackPreGain(
		float value);

	void setFeedbackPreGainMod(
		float value);

	void setFeedbackPostGain(
		float value);

	void setFeedbackPostGainMod(
		float value);

	void setStageMaxRate(
		float value);

	void setFeedbackClip(
		float value);

	void setFeedbackBias(
		float value);

	void setModFuncCutoff(
		bwp_mod_func value);

	void setModFuncFeedbackPreGain(
		bwp_mod_func value);

	void setModFuncFeedbackPostGain(
		bwp_mod_func value);
...
}

Changelog

  • Version 1.0.0:
    • First release (sort of).