bw_sr_reduce

Sample rate reducer.

This is purely an audio effect, it doesn't actually produce an output signal at a lower sample rate. The algorithm is deliberately crude to obtain the characteristic aliasing due to lo-fi downsampling.

Examples

Here you can download one or more example VST3 plugins for Windows, macOS and Linux. Source code of the audio engine(s) is included in the archive(s).

DescriptionLink
Bitcrusher Download
VST® is a trademark of Steinberg Media Technologies GmbH, registered in Europe and other countries.

API

Module type: DSP

bw_sr_reduce_coeffs

typedef struct bw_sr_reduce_coeffs bw_sr_reduce_coeffs;

Coefficients and related.

bw_sr_reduce_state

typedef struct bw_sr_reduce_state bw_sr_reduce_state;

Internal state and related.

bw_sr_reduce_init()

static inline void bw_sr_reduce_init(
	bw_sr_reduce_coeffs * BW_RESTRICT coeffs);

Initializes input parameter values in coeffs.

bw_sr_reduce_set_sample_rate()

static inline void bw_sr_reduce_set_sample_rate(
	bw_sr_reduce_coeffs * BW_RESTRICT coeffs,
	float                             sample_rate);

Sets the sample_rate (Hz) value in coeffs.

bw_sr_reduce_reset_coeffs()

static inline void bw_sr_reduce_reset_coeffs(
	bw_sr_reduce_coeffs * BW_RESTRICT coeffs);

Resets coefficients in coeffs to assume their target values.

bw_sr_reduce_reset_state()

static inline float bw_sr_reduce_reset_state(
	const bw_sr_reduce_coeffs * BW_RESTRICT coeffs,
	bw_sr_reduce_state * BW_RESTRICT        state,
	float                                   x_0);

Resets the given state to its initial values using the given coeffs and the initial input value x_0.

Returns the corresponding initial output value.

bw_sr_reduce_reset_state_multi()

static inline void bw_sr_reduce_reset_state_multi(
	const bw_sr_reduce_coeffs * BW_RESTRICT              coeffs,
	bw_sr_reduce_state * BW_RESTRICT const * BW_RESTRICT state,
	const float *                                        x_0,
	float *                                              y_0,
	size_t                                               n_channels);

Resets each of the n_channels states to its initial values using the given coeffs and the corresponding initial input value in the x_0 array.

The corresponding initial output values are written into the y_0 array, if not BW_NULL.

bw_sr_reduce_update_coeffs_ctrl()

static inline void bw_sr_reduce_update_coeffs_ctrl(
	bw_sr_reduce_coeffs * BW_RESTRICT coeffs);

Triggers control-rate update of coefficients in coeffs.

bw_sr_reduce_update_coeffs_audio()

static inline void bw_sr_reduce_update_coeffs_audio(
	bw_sr_reduce_coeffs * BW_RESTRICT coeffs);

Triggers audio-rate update of coefficients in coeffs.

bw_sr_reduce_process1()

static inline float bw_sr_reduce_process1(
	const bw_sr_reduce_coeffs * BW_RESTRICT coeffs,
	bw_sr_reduce_state * BW_RESTRICT        state,
	float                                   x);

Processes one input sample x using coeffs, while using and updating state. Returns the corresponding output sample.

bw_sr_reduce_process()

static inline void bw_sr_reduce_process(
	bw_sr_reduce_coeffs * BW_RESTRICT coeffs,
	bw_sr_reduce_state * BW_RESTRICT  state,
	const float *                     x,
	float *                           y,
	size_t                            n_samples);

Processes the first n_samples of the input buffer x and fills the first n_samples of the output buffer y, while using coeffs and both using and updating state (control and audio rate).

bw_sr_reduce_process_multi()

static inline void bw_sr_reduce_process_multi(
	bw_sr_reduce_coeffs * BW_RESTRICT                    coeffs,
	bw_sr_reduce_state * BW_RESTRICT const * BW_RESTRICT state,
	const float * const *                                x,
	float * const *                                      y,
	size_t                                               n_channels,
	size_t                                               n_samples);

Processes the first n_samples of the n_channels input buffers x and fills the first n_samples of the n_channels output buffers y, while using the common coeffs and both using and updating each of the n_channels states.

bw_sr_reduce_set_ratio()

static inline void bw_sr_reduce_set_ratio(
	bw_sr_reduce_coeffs * BW_RESTRICT coeffs,
	float                             value);

Sets the output to input sample rate ratio in coeffs.

Valid input range: [0.f, 1.f].

Default value: 1.f.

bw_sr_reduce_coeffs_is_valid()

static inline char bw_sr_reduce_coeffs_is_valid(
	const bw_sr_reduce_coeffs * BW_RESTRICT coeffs);

Tries to determine whether coeffs is valid and returns non-0 if it seems to be the case and 0 if it is certainly not. False positives are possible, false negatives are not.

coeffs must at least point to a readable memory block of size greater than or equal to that of bw_sr_reduce_coeffs.

bw_sr_reduce_state_is_valid()

static inline char bw_sr_reduce_state_is_valid(
	const bw_sr_reduce_coeffs * BW_RESTRICT coeffs,
	const bw_sr_reduce_state * BW_RESTRICT  state);

Tries to determine whether state is valid and returns non-0 if it seems to be the case and 0 if it is certainly not. False positives are possible, false negatives are not.

If coeffs is not BW_NULL extra cross-checks might be performed (state is supposed to be associated to coeffs).

state must at least point to a readable memory block of size greater than or equal to that of bw_sr_reduce_state.

C++ wrapper

Brickworks::SRReduce
template<size_t N_CHANNELS>
class SRReduce {
public:
	SRReduce();
	
	void setSampleRate(
		float sampleRate);

	void reset(
		float               x0 = 0.f,
		float * BW_RESTRICT y0 = nullptr);

# ifndef BW_CXX_NO_ARRAY
	void reset(
		float                                       x0,
		std::array<float, N_CHANNELS> * BW_RESTRICT y0);
# endif

	void reset(
		const float * x0,
		float *       y0 = nullptr);

# ifndef BW_CXX_NO_ARRAY
	void reset(
		std::array<float, N_CHANNELS>               x0,
		std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
# endif

	void process(
		const float * const * x,
		float * const *       y,
		size_t                nSamples);

# ifndef BW_CXX_NO_ARRAY
	void process(
		std::array<const float *, N_CHANNELS> x,
		std::array<float *, N_CHANNELS>       y,
		size_t                                nSamples);
# endif

	void setRatio(
		float value);
...
}

Changelog

  • Version 1.2.0:
    • Added support for BW_INCLUDE_WITH_QUOTES, BW_NO_CXX, and BW_CXX_NO_EXTERN_C.
    • Added debugging checks from bw_sr_reduce_process() to bw_sr_reduce_process_multi().
    • Added debugging checks in bw_sr_reduce_process_multi() to ensure that buffers used for both input and output appear at the same channel indices.
  • Version 1.1.0:
    • Now using BW_NULL and BW_CXX_NO_ARRAY.
  • Version 1.0.0:
    • Added bw_sr_reduce_set_sample_rate(), bw_sr_reduce_reset_coeffs(), bw_sr_reduce_update_coeffs_ctrl(), and bw_sr_reduce_update_coeffs_audio().
    • Added initial input value to bw_sr_reduce_reset_state().
    • Added bw_sr_reduce_reset_state_multi() and updated C++ API in this regard.
    • Now bw_sr_reduce_reset_state() returns the initial output value.
    • Added overloaded C++ reset() functions taking arrays as arguments.
    • bw_sr_reduce_process() and bw_sr_reduce_process_multi() now use size_t to count samples and channels.
    • Added more const and BW_RESTRICT specifiers to input arguments and implementation.
    • Moved C++ code to C header.
    • Added overloaded C++ process() function taking C-style arrays as arguments.
    • Removed usage of reserved identifiers.
    • Added debugging code.
  • Version 0.6.0:
    • Removed dependency on bw_config.
  • Version 0.5.0:
    • Added bw_sr_reduce_process_multi().
    • Added C++ wrapper.
  • Version 0.4.0:
    • Fixed unused parameter warnings.
  • Version 0.3.0:
    • First release.