Brickworks > API documentation > bw_one_pole

bw_one_pole

Description

One-pole (6 dB/oct) lowpass filter with unitary DC gain, separate attack and decay time constants, and sticky target-reach threshold.

This is better suited to implement smoothing than bw_lp1.

Info

Module type: dsp

Version: 1.1.0

Requires:

API

bw_one_pole_coeffs

typedef struct bw_one_pole_coeffs bw_one_pole_coeffs;

Coefficients and related.

bw_one_pole_state

typedef struct bw_one_pole_state bw_one_pole_state;

Internal state and related.

bw_one_pole_sticky_mode

typedef enum {
	bw_one_pole_sticky_mode_abs,
	bw_one_pole_sticky_mode_rel
} bw_one_pole_sticky_mode;

Distance metrics for sticky behavior:

bw_one_pole_init()

static inline void bw_one_pole_init(
	bw_one_pole_coeffs * BW_RESTRICT coeffs);

Initializes input parameter values in coeffs.

bw_one_pole_set_sample_rate()

static inline void bw_one_pole_set_sample_rate(
	bw_one_pole_coeffs * BW_RESTRICT coeffs,
	float                            sample_rate);

Sets the sample_rate (Hz) value in coeffs.

bw_one_pole_reset_coeffs()

static inline void bw_one_pole_reset_coeffs(
	bw_one_pole_coeffs * BW_RESTRICT coeffs);

Resets coefficients in coeffs to assume their target values.

bw_one_pole_reset_state()

static inline float bw_one_pole_reset_state(
	const bw_one_pole_coeffs * BW_RESTRICT coeffs,
	bw_one_pole_state * BW_RESTRICT        state,
	float                                  x_0);

Resets the given state to its initial values using the given coeffs and the initial input value x_0.

Returns the corresponding initial output value.

bw_one_pole_reset_state_multi()

static inline void bw_one_pole_reset_state_multi(
	const bw_one_pole_coeffs * BW_RESTRICT              coeffs,
	bw_one_pole_state * BW_RESTRICT const * BW_RESTRICT state,
	const float *                                       x_0,
	float *                                             y_0,
	size_t                                              n_channels);

Resets each of the n_channels states to its initial values using the given coeffs and the corresponding initial input value in the x_0 array.

The corresponding initial output values are written into the y_0 array, if not BW_NULL.

bw_one_pole_update_coeffs_ctrl()

static inline void bw_one_pole_update_coeffs_ctrl(
	bw_one_pole_coeffs * BW_RESTRICT coeffs);

Triggers control-rate update of coefficients in coeffs.

bw_one_pole_update_coeffs_audio()

static inline void bw_one_pole_update_coeffs_audio(
	bw_one_pole_coeffs * BW_RESTRICT coeffs);

Triggers audio-rate update of coefficients in coeffs.

bw_one_pole_process1*()

static inline float bw_one_pole_process1(
	const bw_one_pole_coeffs * BW_RESTRICT coeffs,
	bw_one_pole_state * BW_RESTRICT        state,
	float                                  x);

static inline float bw_one_pole_process1_sticky_abs(
	const bw_one_pole_coeffs * BW_RESTRICT coeffs,
	bw_one_pole_state * BW_RESTRICT        state,
	float                                  x);

static inline float bw_one_pole_process1_sticky_rel(
	const bw_one_pole_coeffs * BW_RESTRICT coeffs,
	bw_one_pole_state * BW_RESTRICT        state,
	float                                  x);

static inline float bw_one_pole_process1_asym(
	const bw_one_pole_coeffs * BW_RESTRICT coeffs,
	bw_one_pole_state * BW_RESTRICT        state,
	float                                  x);

static inline float bw_one_pole_process1_asym_sticky_abs(
	const bw_one_pole_coeffs * BW_RESTRICT coeffs,
	bw_one_pole_state * BW_RESTRICT        state,
	float                                  x);

static inline float bw_one_pole_process1_asym_sticky_rel(
	const bw_one_pole_coeffs * BW_RESTRICT coeffs,
	bw_one_pole_state * BW_RESTRICT        state,
	float                                  x);

These functions process one input sample x using coeffs, while using and updating state. They return the corresponding output sample.

In particular:

Such assumptions are unchecked even for debugging purposes.

bw_one_pole_process()

static inline void bw_one_pole_process(
	bw_one_pole_coeffs * BW_RESTRICT coeffs,
	bw_one_pole_state * BW_RESTRICT  state,
	const float *                    x,
	float *                          y,
	size_t                           n_samples);

Processes the first n_samples of the input buffer x and fills the first n_samples of the output buffer y, while using and updating both coeffs and state (control and audio rate).

y may be BW_NULL.

bw_one_pole_process_multi()

static inline void bw_one_pole_process_multi(
	bw_one_pole_coeffs * BW_RESTRICT                    coeffs,
	bw_one_pole_state * BW_RESTRICT const * BW_RESTRICT state,
	const float * const *                               x,
	float * const *                                     y,
	size_t                                              n_channels,
	size_t                                              n_samples);

Processes the first n_samples of the n_channels input buffers x and fills the first n_samples of the n_channels output buffers y, while using and updating both the common coeffs and each of the n_channels states (control and audio rate).

y or any element of y may be BW_NULL.

bw_one_pole_set_cutoff()

static inline void bw_one_pole_set_cutoff(
	bw_one_pole_coeffs * BW_RESTRICT coeffs,
	float                            value);

Sets both the upgoing (attack) and downgoing (decay) cutoff frequency to the given value (Hz) in coeffs.

This is equivalent to calling both bw_one_pole_set_cutoff_up() and bw_one_pole_set_cutoff_down() with same coeffs and value or calling bw_one_pole_set_tau() with same coeffs and value = 1 / (2 * pi * value) (net of numerical errors).

value must be non-negative.

Default value: INFINITY.

bw_one_pole_set_cutoff_up()

static inline void bw_one_pole_set_cutoff_up(
	bw_one_pole_coeffs * BW_RESTRICT coeffs,
	float                            value);

Sets the upgoing (attack) cutoff frequency to the given value (Hz) in coeffs.

This is equivalent to calling bw_one_pole_set_tau_up() with same coeffs and value = 1 / (2 * pi * value) (net of numerical errors).

value must be non-negative.

Default value: INFINITY.

bw_one_pole_set_cutoff_down()

static inline void bw_one_pole_set_cutoff_down(
	bw_one_pole_coeffs * BW_RESTRICT coeffs,
	float                            value);

Sets the downgoing (attack) cutoff frequency to the given value (Hz) in coeffs.

This is equivalent to calling bw_one_pole_set_tau_down() with same coeffs and value = 1 / (2 * pi * value) (net of numerical errors).

value must be non-negative.

Default value: INFINITY.

bw_one_pole_set_tau()

static inline void bw_one_pole_set_tau(
	bw_one_pole_coeffs * BW_RESTRICT coeffs,
	float                            value);

Sets both the upgoing (attack) and downgoing (decay) time constant to the given value (s) in coeffs.

This is equivalent to calling both bw_one_pole_set_tau_up() and bw_one_pole_set_tau_down() with same coeffs and value or calling bw_one_pole_set_cutoff() with same coeffs and value = 1 / (2 * pi * value) (net of numerical errors).

value must be non-negative.

Default value: 0.f.

bw_one_pole_set_tau_up()

static inline void bw_one_pole_set_tau_up(
	bw_one_pole_coeffs * BW_RESTRICT coeffs,
	float                            value);

Sets the upgoing (attack) time constant to the given value (s) in coeffs.

This is equivalent to calling bw_one_pole_set_cutoff_up() with same coeffs and value = 1 / (2 * pi * value) (net of numerical errors).

value must be non-negative.

Default value: 0.f.

bw_one_pole_set_tau_down()

static inline void bw_one_pole_set_tau_down(
	bw_one_pole_coeffs * BW_RESTRICT coeffs,
	float                            value);

Sets the downgoing (decay) time constant to the given value (s) in coeffs.

This is equivalent to calling bw_one_pole_set_cutoff_down() with same coeffs and value = 1 / (2 * pi * value) (net of numerical errors).

value must be non-negative.

Default value: 0.f.

bw_one_pole_set_sticky_thresh()

static inline void bw_one_pole_set_sticky_thresh(
	bw_one_pole_coeffs * BW_RESTRICT coeffs,
	float                            value);

Sets the target-reach threshold specified by value in coeffs.

When the difference between the output and the input would fall under such threshold according to the current distance metric (see bw_one_pole_set_sticky_mode()), the output is forcefully set to be equal to the input value.

Valid range: [0.f, 1e18f].

Default value: 0.f.

bw_one_pole_set_sticky_mode()

static inline void bw_one_pole_set_sticky_mode(
	bw_one_pole_coeffs * BW_RESTRICT coeffs,
	bw_one_pole_sticky_mode          value);

Sets the current distance metric for sticky behavior to value in coeffs.

Default value: bw_one_pole_sticky_mode_abs.

bw_one_pole_get_y_z1()

static inline float bw_one_pole_get_y_z1(
	const bw_one_pole_state * BW_RESTRICT state);

Returns the last output sample as stored in state.

bw_one_pole_coeffs_is_valid()

static inline char bw_one_pole_coeffs_is_valid(
	const bw_one_pole_coeffs * BW_RESTRICT coeffs);

Tries to determine whether coeffs is valid and returns non-0 if it seems to be the case and 0 if it is certainly not. False positives are possible, false negatives are not.

coeffs must at least point to a readable memory block of size greater than or equal to that of bw_one_pole_coeffs.

bw_one_pole_state_is_valid()

static inline char bw_one_pole_state_is_valid(
	const bw_one_pole_coeffs * BW_RESTRICT coeffs,
	const bw_one_pole_state * BW_RESTRICT  state);

Tries to determine whether state is valid and returns non-0 if it seems to be the case and 0 if it is certainly not. False positives are possible, false negatives are not.

If coeffs is not BW_NULL extra cross-checks might be performed (state is supposed to be associated to coeffs).

state must at least point to a readable memory block of size greater than or equal to that of bw_one_pole_state.

C++ wrapper

Brickworks::OnePole
template<size_t N_CHANNELS>
class OnePole {
public:
	OnePole();

	void setSampleRate(
		float sampleRate);

	void reset(
		float               x0 = 0.f,
		float * BW_RESTRICT y0 = nullptr);

#ifndef BW_CXX_NO_ARRAY
	void reset(
		float                                       x0,
		std::array<float, N_CHANNELS> * BW_RESTRICT y0);
#endif

	void reset(
		const float * x0,
		float *       y0 = nullptr);

#ifndef BW_CXX_NO_ARRAY
	void reset(
		std::array<float, N_CHANNELS>               x0,
		std::array<float, N_CHANNELS> * BW_RESTRICT y0 = nullptr);
#endif

	void process(
		const float * const * x,
		float * const *       y,
		size_t                nSamples);

#ifndef BW_CXX_NO_ARRAY
	void process(
		std::array<const float *, N_CHANNELS> x,
		std::array<float *, N_CHANNELS>       y,
		size_t                                nSamples);
#endif

	void setCutoff(
		float value);

	void setCutoffUp(
		float value);

	void setCutoffDown(
		float value);

	void setTau(
		float value);

	void setTauUp(
		float value);

	void setTauDown(
		float value);

	void setStickyThresh(
		float value);

	void setStickyMode(
		bw_one_pole_sticky_mode value);

	float getYZ1(
		size_t channel);
...
}

ChangeLog